Deep Reinforcement Learning Algorithms on Deterministic Environment

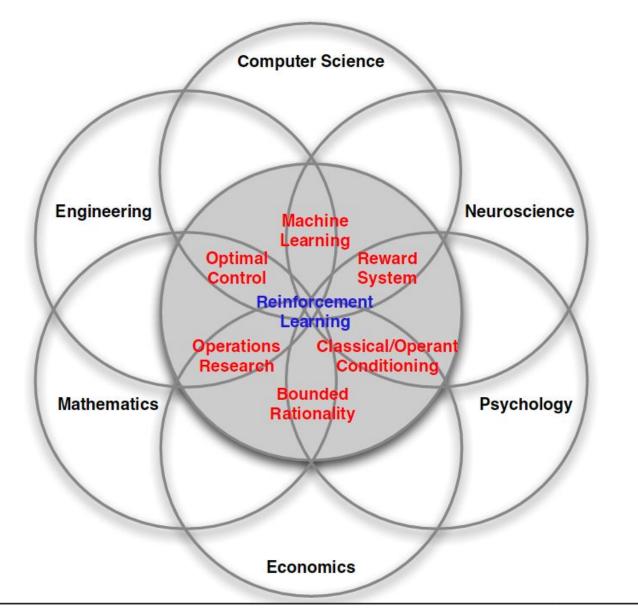
 ∞

Shashank Bhat and Anirudh Sridhar

CSE 510 Reinforcement Learning (Instructor: Alina Vereshchaka)

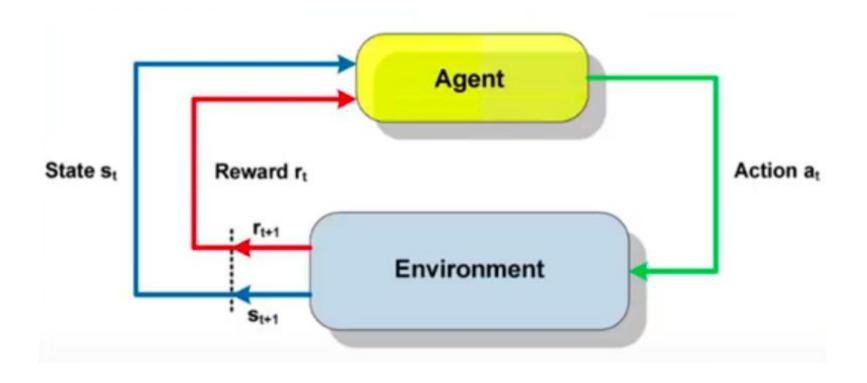
Introduction

Deep RL has gained a lot of success lately in the domains of finance, robotics, multi-agent video games, and text summarization. In this project we are comparing advanced RL algorithms such as DQN, DDQN, Actor-Critic, and PPO on OpenAI Lunar Lander environment.



Components of RL

- Environment, Reward signal and Agent
- The agent further contains agent state, policy, value function (probably), model (optionally).



State Value Function:

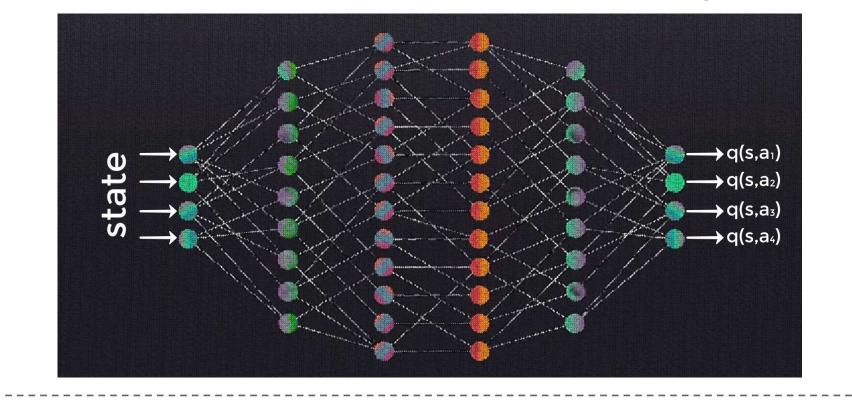
Q(s, a)

Advantage Function:

Q-Learning

 $Q(s,a) \xleftarrow{Q} \chi$

Deep Q Network (DQN)



University at Buffalo The State University of New York

$$\Gamma(s) = \mathbb{E}_{\pi}\left[\sum_{k=0} \gamma^k R_{t+k+1} | S_t = s\right]$$

State-Action Value Function: ∞

$$) = \mathbb{E}_{\pi} \left[\sum_{k=0} \gamma^{k} R_{t+k+1} | S_{t} = s, A_{t} = a \right]$$

$$A(s, a) = Q(s, a) - V(s)$$

Model-free reinforcement learning algorithm

• Goal - learn a policy, which tells an agent what action to take under what circumstances.

• it can handle problems with stochastic transitions and rewards, without requiring adaptations.

$$(s, a) + \alpha(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s, a))$$

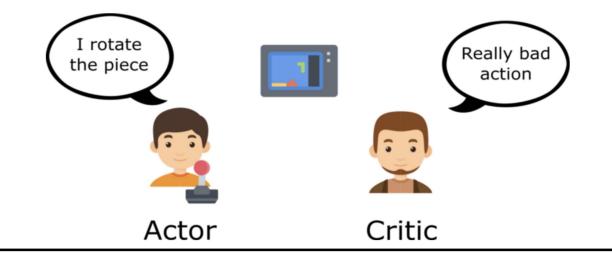
• Traditional Q Learning requires a large state space depending on the amount of states and actions.

• This is where DQN improves upon where we train a neural network to predict the actions rather than storing them.

Double DQN (DDQN)

Algorithm 1 Double Q-learning	
1:	Initialize Q^A, Q^B, s
	repeat
3:	Choose a, based on $Q^A(s, \cdot)$ and $Q^B(s, \cdot)$
4:	Choose (e.g. random) either UPDATE
5:	if UPDATE(A) then
6:	Define $a^* = \arg \max_a Q^A(s', a)$
7:	$Q^A(s,a) \leftarrow Q^A(s,a) + \alpha(s,a) (r$
8:	else if UPDATE(B) then
9:	Define $b^* = \arg \max_a Q^B(s', a)$
10:	a D d d a D d d d d d d d d d d d d d d
11:	
12:	$s \leftarrow s'$
13:	until end

Advantage Actor-Critic Methods



Algorithm 1 Q Actor Critic Initialize parameters s, θ, w and learning rates $\alpha_{\theta}, \alpha_{w}$; sample $a \sim \pi_{\theta}(a|s)$. for $t = 1 \dots T$: do Sample reward $r_t \sim R(s, a)$ and next state $s' \sim P(s'|s, a)$ Then sample the next action $a' \sim \pi_{\theta}(a'|s')$ Update the policy parameters: $\theta \leftarrow \theta + \alpha_{\theta} Q_w(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s)$; Compute the correction (TD error) for action-value at time t: $\delta_t = r_t + \gamma Q_w(s', a') - Q_w(s, a)$ and use it to update the parameters of Q function: $w \leftarrow w + \alpha_w \delta_t \nabla_w Q_w(s, a)$ Move to $a \leftarrow a'$ and $s \leftarrow s'$ end for **Proximal Policy Optimization (PPO)**

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters θ_0 , clipping threshold ϕ_0 for k = 0, 1, 2, ... do Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm Compute policy update

by taking K steps of minibatch SGD (via Adam), where

end for

 (s, \cdot) , observe r, s'E(A) or UPDATE(B)

 $+\gamma Q^B(s',a^*) - Q^A(s,a))$

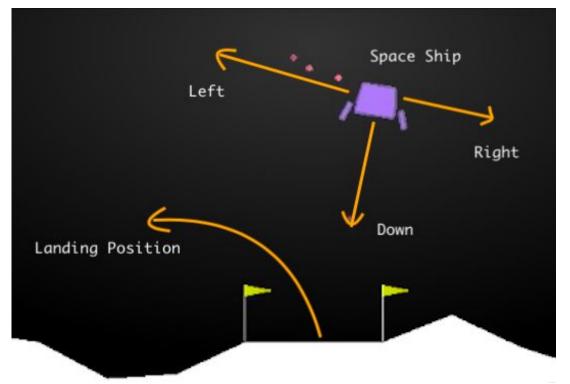
 $r + \gamma Q^A(s', b^*) - Q^B(s, a))$

- $heta_{k+1} = rg\max_{a} \mathcal{L}^{\mathit{CLIP}}_{ heta_k}(heta)$

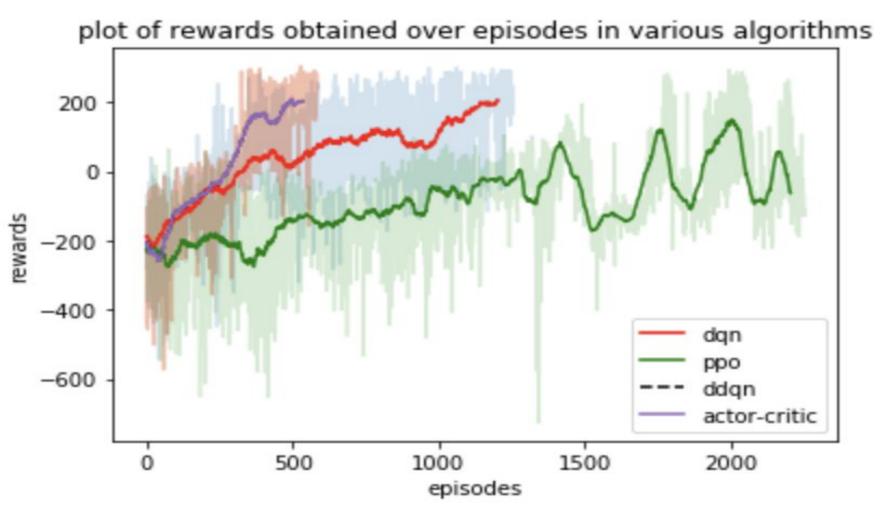
 $\mathcal{L}^{\textit{CLIP}}_{ heta_k}(heta) = \mathop{ ext{E}}_{ au \sim \pi_k} \left[\sum_{t=0}^T \left[\min(r_t(heta) \hat{A}^{\pi_k}_t, \operatorname{clip}\left(r_t(heta), 1-\epsilon, 1+\epsilon
ight) \hat{A}^{\pi_k}_t
ight)
ight]
ight]$

LunarLander Environment

For our experiments we have been working with LunarLander deterministic environment from OpenAI. The environment consists of 4 actions.



Results



Conclusion

The project implemented various Deep RL algorithms and achieved the results as shown in the graph above within the range of 1000 episodes.

References

- 1. Proximal Policy Optimization by OpenAI
- 2. CSE510 Reinforcement Learning Lecture Slides

Department of Computer Science University at Buffalo

sbhat4@buffalo.edu, as443@buffalo.edu